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Eulerian method for computing multivalued solutions of the Euler-Poisson equations
and applications to wave breaking in klystrons
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We provide methods of computing multivalued solutions to the Euler-Poisson system and test them in the
context of a klystron amplifier. An Eulerian formulation capable of computing multivalued solutions is derived
from a kinetic description of the Euler-Poisson system and a moment closure. The system of the moment
equations may be closed due to the special structure of the solution in phase space. The Eulerian moment
equations are computed for a velocity modulated electron beam, which has been shown by prior Lagrangian
theories to break in a finite time and form multivalued solutions. The results of the Eulerian moment equations
are compared to direct computation of the kinetic equations and a Lagrangian method also developed in the
paper. We use the Lagrangian formulation for the explicit computation of wave breaking time and location for
typical velocity modulation boundary conditions.
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I. INTRODUCTION

The phenomenon of wave breaking in systems descr
by fluid equations is widely documented@1#. Different physi-
cal systems and their associated model equations may
quire that their wave breaking events be handled in differ
manners. Where the physics of one system may dictate th
shock develops after the wave breaking event, the physic
another system may dictate that the formation of multivalu
solutions is appropriate after the wave breaking event. Ph
cal systems where multivalued solutions may be appropr
include geometric optics, arrival time in seismic imagin
semiclassical limits of the linear and nonlinear Schro¨dinger
equations, integrable systems~such as the nonlinea
Korteweg–de Vries equation! in the small dispersion re
gimes, nonlinear plasma waves, stellar dynamics and ga
formation, multilane traffic flows, and electron overtaking
the electron beams of vacuum electronics devices. Direct
lerian formulations of such systems based on the class
WKB analysis, which usually introduces viscosity solution
may fail when the physical solution is the one which b
comes multivalued after wave breaking.

Recently, there has been a growing interest in develop
an Eulerian framework for the computation of the multiva
ued solutions that arise in geometric optics@2–6# and in the
semiclassical limit of the Schro¨dinger equation@7–10#. An
Eulerian method may be preferred over a Lagrangian met
since the former computes the numerical solution of par
differential equations on a fixed grid, while the latter m
lose accuracy or need regridding as the rays expand.

In this paper we consider a system of Euler-Poisson eq
tions. The Euler-Poisson equations have applications
many physical problems including fluid dynamics, plasm

*Present address: Los Alamos National Laboratory, MS H8
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dynamics, gas dynamics, elasticity, gaseous stars, quan
gravity, general relativity, rigid bodies, and semiconducto
While it is known that for certain initial conditions the solu
tion of the Euler-Poisson system can break@11#, methods for
computing its multivalued solutions using Eulerian metho
have not been reported.

The main result of this paper is an Eulerian method
solving the Euler-Poisson system that can capture multi
ued solutions beyond wave breaking. The method is base
a kinetic formulation and an exact moment closure. For co
parison, we also give a Lagrangian formulation which
solved analytically prior to wave breaking, and numerica
to include the multivalued solutions. An application of th
method to a modulated electron beam as found in a klys
amplifier is given.

In Sec. II we describe the principle of operation for
klystron amplifier, and we present an Euler-Poisson mode
the system. The Eulerian methods are developed in Sec
A kinetic formulation for the Euler-Poisson system is giv
first, using the Vlasov-Poisson system, which is then clo
using anexactmoment closure to derive multiphase equ
tions in the physical space. This is the main result of
paper. In Sec. IV we present a Lagrangian formulation of
system. Numerical examples comparing the methods
given in Sec. V. Section VI discusses the computation
breaking time and location. The paper is concluded in S
VII. There are several supplemental appendixes provid
details of numerical methods and analytical computation

II. AN EULER-POISSON MODEL OF A MODULATED
ELECTRON BEAM

A wide variety of vacuum electronics devices constitute
large fraction of today’s high power, high frequency electr
magnetic wave sources and amplifiers@13#. The source of
energy for amplification in a vacuum electronics device i
high energy beam of electrons that interacts with an elec
magnetic wave. The class of vacuum electronics devi
,
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known as ‘‘linear beam devices’’ use electron beam veloc
modulation to obtain amplified electron beam current mo
lation, which is converted into amplified electromagnetic
diation.

The simplest example of a linear beam device is a tw
cavity klystron@14,19–21#. The geometry of the two-cavity
klystron is shown in Fig. 1. The basic components of
device are an input cavity, an output cavity, and an elect
beam. The cavities are resonant electromagnetic cav
whose resonant frequencies are equal to the operationa
quency of the amplifier. The electron beam is passed thro
the input cavity where it experiences the electric field of
cavity ‘‘gap,’’ and subsequently passes through the out
cavity where it induces electromagnetic fields in the out
cavity. The radio frequency~rf! signal injected into the inpu
cavity results in a time-varying electric field in the inp
cavity gap. As the electron beam passes through the gap
time-varying gap electric field imparts a ‘‘modulation’’ o
the electrons in the beam. In particular, an electron is ac
erated or decelerated depending on the phase of the gap
tric field during the instant at which the electron pass
through the gap. As the ‘‘velocity modulation’’ is carried b
the dc beam velocity to the output cavity the velocity mod
lation transforms to a beam density and beam current mo
lation. Finally, as the current modulation passes through
output cavity it induces a rf signal which is an amplifie
version of the input rf signal. However, due to the nonline
evolution of the electron beam, the spectra of the beam
rent modulation and the rf output signal are distorted fr
the spectrum of the original rf input signal.

For strong enough input rf ‘‘drive,’’ some electrons a
sped up sufficiently such that they pass by, or ‘‘overtak
other electrons that were initially ahead of them before th
reach the output cavity@24,21#. In a one-dimensional~1D!
Eulerian description of the electron beam, a multivalued
locity function is required to describe the electron beam
havior when the beam has experienced ‘‘overtaking.’’

To simplify our analysis we model a 1D velocity mod
lated electron beam and for the time being ignore coupling
the beam current to an output cavity. Required for the mo
are a charge conservation equation, a momentum bal
equation~Newton’s law! where the force on electrons is du

FIG. 1. Two-cavity klystron geometry. The signal on the inp
cavity imparts a velocity modulation on the electron beam, whic
streaming from left to right in the figure. The velocity modulation
converted to a beam current modulation downstream, which
duces an amplified version of the input signal in the output cav
01650
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to the internal ‘‘Coulomb repulsion,’’ or ‘‘space charge
electric field, and Gauss’ law to determine the evolution
the space charge electric field. The governing equations
the following Euler-Poisson system@12#:

]

]t
r1

]

]z
~ru!50,

]

]t
~ru!1

]

]z
~ru2!5

e

me
RscEr,

]E

]z
5

r2r0

e0
, ~1!

subject to the boundary conditions

r~0, t !5r0 ,

u~0, t !5u01u0

e~ t !

2
,

E~0, t !50,

wherer(z,t) is the electron beam charge density,u(z,t) is
the electron beam velocity, andE(z,t) is the space charge
electric field. The functione(t) represents an arbitrary time
dependent modulation of the electron beam velocity at lo
tion z50. The ‘‘space charge reduction factor’’Rsc accounts
for the finite radius of the electron beam by reducing t
accelerating electric field an electron experiences@14,22#.
The variablese, me , ande0 represent electron charge, ele
tron mass, and permittivity of free space, respectively. T
dc beam charge densityr0 and dc beam velocityu0 are
determined by the dc beam current, dc beam voltage,
beam radius~see Sec. V!.

In order to make our formulation more generic, and t
numerical procedures more convenient and effective,
choose the following characteristic quantities:

Z5L, U5u0 , T5
Z

U
, D5r0 ,

whereL is the klystron length~see Sec. V!, and define the
nondimensional variables

z* 5
z

Z
, u* 5

u

U
, t* 5

t

T
, r* 5

r

D
, E* 5

e0E

ZD
.

One arrives at the rescaled equations

]

]t
r1

]

]z
~ru!50,

]

]t
~ru!1

]

]z
~ru2!5R̂scrE,

]E

]z
5r21, ~2!
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-
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with

R̂sc5
eZDT

mee0U
Rsc5vp

2T2Rsc ~3!

and the boundary conditions

r~z50, t !5r0~ t !51, u~z50, t !5u0~ t !511
e~ t !

2
,

where the normalized asterisk~* ! notation has been dropped
A case of general interest in klystrons is

u0~ t !511
1

2 (
n

ensin~vnTt1un!. ~4!

In this case, we will normalize the frequencyvn to vnT so
that the scaling factorT will not appear in derivations. The
term vp introduced in Eq.~3! is the plasma frequency@14#.
Finally, we would point out that our analysis and numeric
methods are not restricted to a constant input densityr0(t)
51. We will use the notationr0(t) or r0 to represent a
generic density boundary condition, even though all the
merical results are carried out forr051.

III. EULERIAN METHODS

A. A kinetic approach

It is known that the solution of the Euler-Poisson syst
can break in finite time@11#, and that the densityr(z,t) will
display the concentration effect~usually called ad shock!,
whereas the velocity will develop a shock profile. After t
solution breaks, there are different ways to interpret the
lution. Conventionally the solution is obtained in the limit
zero viscosity. Numerical evidence shows that this allo
shock propagation. However, in some circumstances, suc
a modulated electron beam, one expects the overtaking
nomena, i.e., the solution of the Euler-Poisson system
comes multivalued.

To interpret the multivalued solutions of the Eule
Poisson equations, we propose the following so-ca
Vlasov-Poisson equations for the kinetic distributi
w(z,v,t),

wt1vwz1R̂scE~z,t !wv50,

]

]z
E5E

R1
w~z,v,t !dv21,

~z,v,t !PR3R13R1, ~5!

with the boundary value,

w~0,v,t !5r0~ t !d„v2u0~ t !…. ~6!

In order to make the connection to the Euler-Poisson eq
tions we define

r5E
R1

w~z,v,t !dv, I 5E
R1

w~z,v,t !vdv,
01650
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as charge density and current density functions. If one
sumes that the solution to Eqs.~5! remains as ad function
~as will be justified for the single-phase case!, i.e.,

w~z,v,t !5r~z,t !d„v2u~z,t !…,

one can multiply the Vlasov-Poisson equations by 1 andv,
integrate with respect tov and obtain the Euler-Poisso
equations~2!. This indicates the equivalence of the Vlaso
Poisson equations and the Euler-Poisson system when
solution is single valued. As the solution becomes multiv
ued, the introduction of the phase variablev naturally incor-
porates all of the possible values in the solution.

To solve Eqs.~5!, we define its ‘‘bicharacteristic curves
@s,t(v0 ,t0 ;s),v(v0 ,t0 ;s)#,

d

ds
t51/v, t5t0 at s50,

d

ds
v5R̂scE/v, v5v0 at s50,

z5s. ~7!

Equations~7! define a mapping

~v0 ,t0!PR13R1→~v,t !PR13R1.

We assume that this mapping is smooth. This is not a m
ematically rigorous result. It has not been proven true ma
ematically for general initial or boundary value problems
the Vlasov-Poisson system~5!. However, for the numerica
examples given in this paper, this assumption seems v
based on the numerical evidence given in Sec. V.

To check the invertibility of the mapping we consider th
associated Jacobian,

D5detS ]~v,t !

]~v0 ,t0! D .

By direct differentiation one can verify that

d

ds
~vD!50. ~8!

In light of the initial conditions we get from Eq.~8!,

D~v0 ,t0 ;s!5v0 /v~v0 ,t0 ;s!. ~9!

Since we only consider cases whenv(v0 ,t0 ;s).0, Eq. ~9!
implies that the mapping (v0 ,t0)→(v,t) is invertible. We
use@ t0(v,t;s),v0(v,t;s)# to represent the inverse transform

Simple computation using Eq.~5! shows that

d

ds
w„s,v~v0 ,t0 ;s!,t~v0 ,t0 ;s!…50.

Therefore, along the bicharacteristic curves the solution
Eq. ~5! remains invariant,

w~z,v,t !5w„0,v0~v,t;z!,t0~v,t;z!…,
2-3
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5r0
„t0~v,t;z!…d„Fzt~v !…,

with

Fzt~v !5v0~v,t;z!2u0
„t0~v,t;z!…. ~10!

If the kernel ofFzt(v) $v:Fzt(v)50% has finitely many
elements$uk ,k51,2, . . . ,N(z,t)%, then d„Fzt(v)… can be
split up and the solution of Eqs.~5! can be written as

w~z,v,t !5 (
k51

N

rkd~v2uk!, rk5r0uFzt8 ~uk!u21.

~11!

This form of the solution will be used to close the mome
system of the Euler-Poisson equations~5!, just as the local
Maxwellian closes the moment system of the Boltzma
equation. This linear superposition was obtained first for
linear Vlasov equation where the potential is independen
the solution~external potential! in Refs.@8,15#.

One can verify that each pair (rk ,uk) given above satis-
fies the Euler-Poisson system. This was proved for the lin
Vlasov equation in Ref.@8# and the same argument hold
here. Therefore, the kinetic formulation provides a way
recover the multivalued solutions to the Euler-Poisson s
tem.

Meanwhile, as the solution becomes multivalued, we h

r5E w~x,v,t !dv5 (
k51

N

rk ,

I 5E w~x,v,t !vdv5 (
k51

N

rkuk .

Namely, the charge density and current density comply w
the linear superposition principle even though each in
vidual phase is governed by a nonlinear system.

Figure 2 provides an illustration of the evolution inz of a
constantw(z,v,t) curve for which the solution in the phys
cal space becomes three phased.

B. Multiphase equations in the physical space

The kinetic equation can certainly be solved via stand
finite difference discretization using the upwind scheme o
particle method. However, computations based on the
cretization of phase space or a collection of interacting p
ticles can be very expensive, especially when one attem
to achieve good resolution. We thus aim at establishin
system defined only in thephysical spaceto describe the
multiphase phenomena. This technique is motivated
the kinetic theory of gas dynamics and is usually called
netic moment closure@16–18#. Unlike the usual moment clo
sure for a general kinetic~Boltzmann! equation, which uses
an ad hocform of density distribution and therefore obtain
an approximate moment system, here we have obtained
exact moment closure using Eq.~11!.

We first define the moments of the Vlasov-Poisson eq
tion
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ml5E
R1

w~z,v,t !v ldv, l 50,1, . . . ,2N. ~12!

Then taking moments of Eqs.~5! one gets

]

]t
m01

]

]z
m150,

]

]t
m11

]

]z
m25R̂scm0E,

•••1•••5•••,

]

]t
m2N211

]

]z
m2N5~2N21!R̂scm2N22E,

]E

]z
5 (

k51

N

rk21. ~13!

In order to close this system, and to be able to advance
system in thez direction, we need to representm0 in terms of
(m1 ,m2 , . . . ,m2N). From Eq.~11! one can express the mo-
ments in terms of (rk ,uk)’s:

ml5 (
k51

N

rkuk
l , l 51,2, . . . ,2N,

and therefore we have a mapping from (rk ,uk)’s to
(m1 ,m2 , . . . ,m2N). It has been shown@8# that if rk’s are
positive anduk’s are distinct, then the mapping is invertible
Therefore, when the number of physical phasesN is finite the
system can be closed exactly.

For the examples we will present in Sec. V we haveN
53. We define

FIG. 2. ~Color online! Illustration of evolution inz of a constant
w(z,v,t) curve for which the solution in the physical space be
comes three phased.
2-4
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p15u11u21u3 ~14!

5
m6m2

22m6m3m11m5m4m12m5m2m31m4m3
22m2m4

2

m5m2
22m5m3m11m4

2m122m2m3m41m3
3

, ~15!

p25u1u21u1u31u2u3 ~16!

52
m6m4m12m6m3m21m5m3

22m5
2m11m5m4m22m3m4

2

m5m2
22m5m3m11m4

2m122m2m3m41m3
3

, ~17!

p35u1u2u3 ~18!

52
m6m2m42m6m3

22m5
2m212m5m4m32m4

3

m5m2
22m5m3m11m4

2m122m2m3m41m3
3

. ~19!
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Thenm0 can be expressed as

m05~m32p1m21p2m1!/p3 .

The first six equations of Eqs.~13! are closed in this manne
For N52, one can define

p15
m4m12m2m3

m1m32m2
2

,

p25
m2m42m3

2

m1m32m2
2

.

Thenm05(2m21p1m1)/p2 and the first four equations ar
closed. In the caseN51 the first two equations of the sys
tem, Eqs.~13!, are reduced to the original Euler-Poisson s
tem. One can also define functions,

f15m1m32m2
2 ,

f252m5m2
21m5m3m12m4

2m112m2m3m42m3
3 ,

as indicators to identify the number of phases at the p
(z,t). Namely,

No. of phases5H 1 if f150

2 if f1.0, f250

3 if f2.0.

To use the multiphase formulation one must assum
maximum number of phasesNmax at the outset of the calcu
lation, and use indicator functions as above to monitor
actual number of phasesN in the solution@23#. WhenN is
large one may not get an exact formula form0, but a numeri-
cal procedure can be used to obtainm0 approximately~see
Ref. @8#!.
01650
-

t

a

e

IV. A LAGRANGIAN APPROACH

For comparison with the Eulerian method of Sec. III
we next develop a Lagrangian formulation of Eqs.~2!.

Upon entering the system at timet5t0 a fluid element has
the coordinates (z50, t5t0). The trajectory of the fluid el-
ement may be parametrized by either@z,t(z,t0)# or
@z(t,t0),t# where the different parametrizations lead to tw
different sets of equations. Since we consider only ca
when the electrons are not reflected, i.e.,]z/]t.0, the in-
verse function theorem guarantees the equivalence of the
scriptions. In this section we consider the first of the tw
suggested parametrizations.

We define

z5s,

t5t~s,z!, ~20!

with

]t

]s
5

1

u
, t~0,z!5z,

]u

]s
5

R̂scE

u
, u~0,z!5u0~z!. ~21!

By employing the derivative transformations the continu
equation in Lagrangian coordinates becomes

]

]s S ru
]t

]z D50.

Hence,

I ~s,z!5ru5
r0~z!u0~z!

U ]t

]zU
. ~22!

The absolute value on the Jacobian]t/]z is required by the
2-5
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physics of the problem, i.e., foru.0 the density and curren
must be positive. For systems that exhibit wave breaking
absolute value is required since the Jacobian changes
At the point of wave breaking the Jacobian is zero and
current becomes infinite. At this point Eq.~22! is not valid
and an integral equation is required.

In Eulerian coordinates the density is the superposition
each of the densities carried along each of the character
curves, i.e.,

rE~z,t !5 (
$(s,z):t(s,z)5t,s5z%

rL~s,z!. ~23!

Gauss’ law forE must account for this superposition. A nu
merical scheme for solving Eqs.~21! is given in Appendix A.

V. NUMERICAL RESULTS

In this section we present results for two cases to test
validity of our formulations. We compare results from th
kinetic formulation ~Sec. III A!, the multiphase techniqu
~Sec. III B!, and the Lagrangian method~Sec. IV!—which
will serve as the correct reference solution.

In our examples we considere(t) to be of the form@12#

e~ t !5e1sin~v1t1u1!1e2sin~v2t1u2!.

The physical parameters and derived quantities used in
examples are listed in Table I.

A. Single frequency input

For comparison of the multiphase, kinetic, and Lagra
ian schemes we choose the velocity modulation funct
e(t),

e~ t !5e1sin~v1Tt!, ~24!

with v152p3109 rad/s ande150.4 ~i.e., e250).
We first show the numerical solutions obtained by in

grating the Euler-Poisson equations~2! without accounting
for multiple phases@Eqs. ~13! with Nmax51]. In Fig. 3 we
plot the currentI (z,t) solutions at different locations. Th
solution first develops a single peak and is then smoothed
by the potential. This solution does not allow overtaking a
thus is not physically correct@compare with Fig. 4#.

The current waveforms atz51.0 predicted by the meth
ods presented in this paper are shown in Fig. 4. The meth
include solving directly the Vlasov-Poisson system withDz
5531025,Dt54Dz,Dv5Dz, solving the moment system
with Dz5531023,Dt52Dz, and solving the Lagrangian
equations withDz5531023,Dt52Dz via the method de-
veloped in Appendix A. Using the analysis of Sec. VI w
determined that there are three phases in the multiphas
gion.

The numerical computations of the current display sim
structure. However, the Eulerian methods—both the kin
and the moment methods—display smooth transitions ac
phase boundaries, whereas the Lagrangian method sh
discontinuous transitions. The discrepancy lies in the f
01650
e
gn.
e

f
tic

e

he

-
n

-

ut
d

ds

re-

r
ic
ss
ws

ct

that the Eulerian methods use numerical viscosity, wh
smears out the discontinuity as in any standard shock cap
ing scheme. In the kinetic computation, a narrow Gaussia
used to represent thed function boundary data, as describe
in Appendix A, which could further smooth out the disco

TABLE I. Physical parameters and derived quantities for a r
resentative klystron design with nominal operating frequency o
GHz. The value ofRsc is estimated from Fig. 9-3 in Ref.@14# for a
fill factor of r b /a'0.3 andber b'0.1.

Description Symbol Value

Beam voltage V0 8.50 kV

Beam current I 0 0.25 A

Beam radius r b 0.85 mm

Klystron length L5lq/4 13.6 cm

Space charge reduction factor Rsc 0.01

dc beam velocity u05A2eV0

me

5.463107 m/s

dc beam charge density r05
I0

u0prb
2

2.0231023 C/m3

Plasma frequency vp5A er0

mee0

2p3109 rad/s

Effective plasma frequency vq5ARscvp 2p3108 rad/s

Plasma wavelength lp5
2pu0

vp
5.43 cm

Effective plasma wavelength lq5
lp

ARsc

54.3 cm

FIG. 3. ~Color online! The current solutions at different loca
tions obtained from the Euler-Poisson system when only accoun
for a single phase in the solution~i.e., Nmax51). The solutions are
displayed for two periods:tP(0,0.8#.
2-6
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tinuity. The peaks in the current waveform are theoretica
of infinite height; however, due to numerical resolution
the methods they have finite amplitudes in the Eulerian
lutions.

To further illustrate the existence of the multivalued so
tions in Eulerian coordinates, we plot the multivalued velo
ity profile (u1 ,u2 ,u3) obtained from the moment syste
~13! together with the algebraic equations~14!–~18!, as well
as the Lagrangian solutions in Figs. 5~a!–5~c!. The velocities
produced by these two methods are in good agreement,
the large multiphase region of the velocity solution is clea
evident. As the number of phases changeu1 ~or u3) andu2
approach each other and the system~14!–~18! becomes ill
conditioned. This fact accounts for the jumps inu3 at the
phase boundary seen in Figs. 5~a!–5~c!. This is of little con-
cern since the values at the jump are disregarded, as in
shock computation.

Among the three numerical methods, the multipha
method is the most computationally efficient. ForN grid
points in thez andt directions the computational complexit
is of order O(N2) for the multiphase method. Solving th
kinetic Vlasov-Poisson equations by finite difference me
ods are oftenO(N3) because of the additional phase-spa
dimension. Another difficulty in solving the kinetic equatio
is due to the irregularity of the solution, i.e., the presence
d functions. Although one can replaced functions by
smoother functions, such as Gaussian distributions with
row width, the numerical grid size must decrease as
width decreases. The development of an efficient couplin
the moment system and the kinetic equations is currentl
progress. The Lagrangian method, along with the finite F
rier method, offers the best resolution for a given mesh s
However, the evaluation of the Fourier integrals can lead
O(M3N2) cost, whereM is the number of Fourier modes
In fact, for the test problem in Sec. V B, the Lagrangi
method takes several days to finish on a 1.8 GHz Gnu/Li
machine, while solving the moment system only takes s
eral minutes. In addition, because of the presence of

FIG. 4. ~Color online! The current waveforms atz51.0 pre-
dicted by the kinetic formulation, the multiphase formulation, a
the Lagrangian formulation. The solutions are displayed for t
periods:tP(0,0.8#.
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peaks a very large number of modes are required to repre
the solutions. Therefore, the numerical solutionI (z,t) often
displays spurious oscillations. Interestingly, since the traj
tory t̂ (z) is well resolved in the Lagrangian method, it
preferable to use Eq.~22!, accounting for multiple phases a
in Eq. ~23!, to compute the current once the trajectory
obtained. A natural fix to speed up the Lagrangian meth

o

FIG. 5. ~Color online! The multivalued velocity profile~a! u1,
~b! u2, and~c! u3 and the Lagrangian velocity solution at locatio
z51.0. The solutions are displayed for one period:tP(0,0.4#. The

Lagrangian solution (t̂ ,v̂) has been converted into this interval u
ing the periodic properties of the solution.
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would be to use a local basis in lieu of a Fourier represe
tion.

B. Two frequency input

The klystron theory of Lauet al. @12# has been favorably
compared to certain experimenal results for several ca
@19,20#. Therefore, it is useful to compare results from t
methods in this paper to those in Ref.@12#.

A case of considerable interest in klystrons is when
input signal contains more than one frequency. For such
input signal the electron beam nonlinearity produces ad
tional spectral components~so-called intermodulation prod
ucts! in the beam modulation, and hence in the rf outp
signal. For such input modulations the theory of Lauet al.
@12# has been compared to experiments with remarka
agreement@19,20#. We test our formulations on such an inp
spectrum and compare our results to those computed in
@12#.

We have the velocity modulation functione(t),

e~ t !5e1sin~v1Tt!1e2sin~v2Tt!, ~25!

with e15e250.1, v152p3(1.0033109) rad/s, v252p
3(1.0073109) rad/s. The beam spectrum atz51.0 is
shown in Fig. 6. The spectral components are the Fou
coefficients of the current atz51.0, computed from the mul
tiphase equations.

VI. BREAKING TIME AND LOCATION

In this section we develop tools for studying wave brea
ing time and location based on the alternative Lagrang
formulation given in Appendix B. This is of relevance as o
chooses the physical parameters as well as the computat
domain to observe multiphase phenomena. Similar res
are obtained in Ref.@11# for initial value problems.

In Appendix B we derive the following expression for th
Jacobian of the alternate Lagrangian coordinates@Eq. ~B14!#:

FIG. 6. ~Color online! Output spectrum due to input modulatio
in Eq. ~24!. Included are the third-order~999, 1011! and fifth-order
~995, 1015! intermodulation products. Shown are results from t
multiphase formulation and data from Ref.@12#.
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]z

]z
5

1

AR̂sc

d

dz
u0~z!sinAR̂sc~t2z!2u0~z!,

which is only validprior to wave breaking. To find the criti-
cal time at which the solution breaks, we set]z/]z equal to
zero

AR̂sc

u0~z!

d

dz
u0~z!

5sinAR̂sc~t2z!, ~26!

and determine conditions for which Eq.~26! has solutions.
Equation~26! is solvable as long as the value of left-han
side is between21 and 1.

For the case of a modulation with a single frequency, E
~26! becomes

sinAR̂sc~t2z!5
2AR̂sc

e1v1

11
e1

2
sin~v1z!

cos~v1z!
. ~27!

Since fore1<2,

min
z

11 1
2 e1sin~v1z!

ucos~v1z!u
5A12

e1
2

4
,

a necessary condition for Eq.~27! to have solutions is

v1e1

2AR̂sc

>A12
e1

2

4
. ~28!

If Eq. ~27! is satisfied, then at least two characteristic curv
will cross at timet. The multiple values ofz can be solved
from Eq. ~27!. These calculations can also be carried out
the general boundary condition given in Eq.~4!.

FIG. 7. ~Color online! The left-hand side of Eq.~26! illustrating
multiphase content in the current waveform. The fluid eleme
labeled byz where the left-hand side of Eq.~26! is between21 and
1 will enter the multiphase region.
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A direct way to see whether a solution is multivalued is
plot the left-hand side of Eq.~26!. For parameters where th
value is between21 and 1 multiphase phenomena is e
sured. For the parameters of Sec. V A the left-hand side
Eq. ~26! is shown in Fig. 7. Since the left-hand side tak
values between21 and 1 the solutions become multivalue
in part of the domain. One can show using Eq.~27! that for
these parameters the number of phases in the multiphas
lution is three.

For the parameters of Sec. V B we plot the left-hand s
of Eq. ~26! in Fig. 8. This illustrates that for these paramete
the solutions are multivalued.

VII. CONCLUSIONS

In this paper, we develop an Eulerian technique to sim
late multiphase phenomena for electron beam wave brea
in a modulated electron beam. The basic physical mode
the Euler-Poisson system. We provide three methods of s
ing the Euler-Poisson system~2! that are valid when the
solutions are multivalued: a kinetic formulation, a mul
phase Eulerian formulation, and a Lagrangian formulati
We compare the methods with each other for a modula
electron beam. For the case when the input modulation c
tains a single frequency, the three methods are seen to a
The multivalued structure of the current is confirmed by
multiphase Eulerian technique as well as the Lagrang
technique. For an input modulation with two frequencies
output current spectrum is computed. In this case the m
valued region is small and the multiphase method is in ag
ment with the theory of Ref.@12#.
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APPENDIX A: NUMERICAL SCHEMES

1. Kinetic scheme for the multiphase system

In this section we briefly present the numerical metho
we use to solve the multiphase system~13!. The schemes are
called kinetic schemes, which were developed in Ref.@8# for
multiphase moment equations. The method consists o
transport step through the kinetic equation and a projec
into the equilibrium state in Eq.~11!. See Ref.@8# for details.

We first give a direct scheme to solve the kinetic equati
and this scheme will induce a ‘‘kinetic scheme’’ for the m
ment system. Since we restrict our phase variablev to be
positive, we can simply use upwind scheme to solve
kinetic equation

wj ,k
n 2wj ,k

n21

Dt
1vk

wj 11,k
n 2wj ,k

n

Dz
1R̂scEj

nwv50. ~A1!

Here wj ,k
n 5w(zj ,vk ,tn). Note that since we update the s

lution values in thez direction, the upwind difference is don
in the t derivative. The discretization of thev derivative de-
pends on the sign ofE. For instance, one may use

wv55
wj ,k

n 2wj ,k21
n

Dv
if Ej

n.0

wj ,k11
n 2wj ,k

n

Dv
if Ej

n<0.

The electric fieldEj
n can be obtained by simple finite differ

ence, for example,

Ej 11
n 2Ej

n

Dz
5r j

n .

To improve the accuracy of the above schemes nonosc
tory second-order schemes can be introduced following R
@8#.

Because of the presence ofd functions in the solution, we
need to smooth out the singularities in order for the poi
wise values to make sense. In practice, a Gaussian dist
tion is usually used. For example, the boundary condition~6!
can be replaced by

w~0,v,t !5r0~ t !exp2[v2u0(t)] 2/e/A2pe,

with e as a small parameter. We also take the grid size to
smaller thane to resolve the small width. For this reaso
particle methods, which are similar to our Lagrangi
method, are suitable for the problem. We have found tha
particle method offers a substantial advantage over solv
the kinetic equation by finite differencing, but is still four t
five times more expensive than our Lagrangian method.

-
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example, for the problem of Sec. V B the Lagrangian meth
requires several days of computation, the particle met
requires more than ten days of computation, and solving
kinetic equation by finite differencing requires about fo
weeks of computation on a 1.8 GHz Gnu/Linux PC. Sin
our purpose of solving the kinetic equation is to numerica
verify the multiphase approach, we will not discuss this iss
further.

In order to get a numerical method for the moment s
tem, one can simply integrate~A1! with respect tov and use
the closure ansatz Sec.~III B !. Since all of the waves are
going to the right in the context of the klystron, the kine
scheme is reduced to an upwind procedure. Namely,

ml~zk ,tn!2ml~zk ,tn21!

Dt
1

ml 11~zk11 ,tn!2ml 11~zk ,tn!

Dx

5~ l 21!R̂scml 21~zk ,tn!E~zk ,tn!, ~A2!

for l 50,1, . . . . Thepotential is obtained from integration o
m0. Periodic conditions are imposed in thet direction and
the numerical methods can be advanced in thez direction up
to z5L.

2. Finite difference scheme for the Lagrangian system

In this section, we present a numerical procedure t
solves the Lagrangian equations~21!. The novelty of this
approach is that one can easily switch to Eulerian coo
nates to solve the electric fieldE(z,t).

First we define the characteristic curves of the Eul
Poisson system@ ẑ, t̂ (t0 ;s),v̂(t0 ;s)#,

d

ds
t̂51/v̂, t5t0 at s50,

d

ds
v̂5R̂scE/ v̂, v5u0~ t0! at s50,

ẑ5s. ~A3!

Equations~7! may be projected to Eqs.~A3! by forcing v0
5u0(t0). This fact will be used in the following computa
tion. Notice that Eqs.~A3! are the same as Eqs.~20! and
~21!; however, we use a different notation here to make
connection between Eqs.~A3! and Eqs.~7!.

The characteristic curves of Euler-Poisson system m
experience crossing which indicates the appearance of
tiphase solutions as we have seen in Sec. VI. However
bicharacteristic curves of the kinetic equation~5! will never
cross since the Jacobian of Eq.~9! is always nonzero. This is
essentially why the kinetic approach is capable of unfold
the multivalued solutions.

Second we represent the densityr(z,t) in Eulerian coor-
dinates by a Fourier series

r~z,t !5(
n

r̃n~z!eiv0nt. ~A4!

The coefficientsr̃n can be determined by the integral
01650
d
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r̃n5
v0

2pE0

2p/v0
e2 iv0ntr~z,t !dt.

The electric field can also be represented by a Fourier se

E~z,t !5(
n

Ẽn~z!einv0t ~A5!

and

]Ẽn

]z
~z!5 r̃n~z!2dn , ~A6!

wheredn51 if n50 and 0 otherwise. Notice thatẼ0[0.
We now derive a formula to compute these Fourier co

ficients with the aid of the kinetic distributionw(z,v,t),

r̃n5
v0

2p E
0

2p/v0E
R1

e2 iv0ntw~z,v,t !dvdt

5
v0

2p E
0

2p/v0E
R1

e2 inv0t(v0 ,t0 ;z)w~0,v0 ,t0!Ddv0dt0

5
v0

2p E
0

2p/v0E
R1

e2 inv0t(v0 ,t0 ;z)r0d„v02u0~ t0!…Ddv0dt0

5
v0

2p E
0

2p/v0
e2 inv0 t̂ (t0 ;z)I 0~ t0!/ v̂~ t0 ;z!dt0 . ~A7!

In the above computations we made a transformation fr
(v,t) coordinates to (v0 ,t0) coordinates using the Jacobia
in Eq. ~9!, we have used the projection from Eqs.~7! to Eqs.
~A3! which is realized by thed function, and we have use
the fact that the initial currentI 0(t0)5r0(t0)u0(t0).

Finally we can build a numerical procedure. Within on
loop tP@z,z1Dz) we use a second-order Runge Kut
method.

~1! Solve Eq.~A3! for a half step:

t̂~ t0 ,z1 1
2 Dz!5 t̂~ t0 ;z!1 1

2 Dz/ v̂~ t0 ;z!,

v̂~ t0 ,z1 1
2 Dz!5 v̂~ t0 ;z!1 1

2 DzR̂scE„t̂~ t0 ;z!,z…/ v̂~ t0 ;z!.

~2! Use the formula~A7! and trapezoidal quadrature t
computer̃n(z).

~3! Ẽn(z1 1
2 Dz)5Ẽn(z)1 1

2 Dz@ r̃n(t,z)2dn#.
~4! Use fast Fourier transform to computeE@ t̂ (t0 ;z

1 1
2 Dz),z1 1

2 Dz# by Eq. ~A5!.
~5! Solve Eq.~A3! for the whole step:

t̂~ t0 ,z1Dz!5 t̂~ t0 ;z!1Dz/ v̂~ t0 ;z1 1
2 Dz!,

v̂~ t0 ,z1Dz!5 v̂~ t0 ;z!1DtR̂scE„t̂~ t0 ;z1 1
2 Dz!,z

1 1
2 Dz…/ v̂~ t0 ;z1 1

2 Dz!.

~6! ComputeE„t̂ (t0 ;z1Dz),z1Dz… as in previous steps
~7! z5z1Dz, go to 1 unlessz5L.
2-10
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Remark 1.The technique used in Eq.~A7! can be easily
applied to other quantities. For example, one can make
of Fourier series and obtain the Fourier coefficients of
current,

Ĩ 1~L,n!5
v0

2p E
0

2p/v

e2 inv0tm1~L,t !dt ~A8!

5
v0

2p E
0

2p/v0
e2 inv0 t̂ (t0 ;L)I ~0,t0!dt0 , ~A9!

which has appeared in Ref.@12#.
Remark 2.By replacing the Fourier mode in Eq. A4 wit

a delta distributiond(t2tn), with tn as discrete points on th
t axis, one obtains the traditional particle method. We h
found that the Fourier method has better performance t
the particle method~see preceding section!.

APPENDIX B: ALTERNATIVE
LAGRANGIAN COORDINATES

Next we introduce an alternative set of Lagrangian co
dinates. The resulting Lagrangian equations can be ana
cally solved, where the solutions are only valid prior to wa
breaking. The resulting formulas allow us to compute bre
ing times and locations.

Define the Lagrangian coordinates~t,z! which are con-
nected to the Eulerian independent variables (z,t) by

z5z~t,z!,

t5t, ~B1!

with

]z

]t
5u, z~z,z!50,

]u

]t
5R̂scE, u~0,z!5u0~z!. ~B2!

By the definitions in Eqs.~B1! and ~B2! the Lagrangian co-
ordinates~t,z! are equivalent to the Lagrangian coordina
(t,t0) that one often sees in the microwave device literat
@12#.

Using Eqs.~B1! and ~B2! one finds that the continuity
equation in these Lagrangian coordinates is

]

]t S ]z

]z
r D50,

which considering the boundary data has the solution

r~t,z!5
r0~z!u0~z!

U]z

]zU
, ~B3!

where the absolute value sign on the Jacobian is require
the insistence on positive densities.
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This Lagrangian formulation can be analytically solve
but the solution only holds prior to wave breaking. We co
sider the case when the Jacobian is negative definite and
remove absolute value signs. For the Euler-Poisson syste
these Lagrangian coordinates we have

]2z

]t2
5R̂scE, ~B4!

r
]z

]z
52r0~z!u0~z!, ~B5!

]E

]z
5

]z

]z
~r21!. ~B6!

Define

X[
]z

]z
~r21! ~B7!

and use~B4!–~B6! to get

]2X

]t2
1R̂scX50. ~B8!

The first of the two initial conditions required to solve E
~B8! is

X~z,z!5u0~12r0!. ~B9!

Then notice that

]X

]t
~z,z!52

]u

]z
~z,z! ~B10!

and compute

]u

]j
@t~j!,z~j!#5

]u

]t

]t

]j
1

]u

]z

]z

]j
~B11!

on ~t,z!5~j,j!. Sinceu(z,z)5u0(z) andE(z,z)5E0(z) one
gets

]u

]z
~t,z!5R̂scE

0~z!1
du0

dz
~z! on t5z,

so

]X

]t
~z,z!52R̂scE

0~z!2
du0

dz
~z!. ~B12!

Finally, solving Eq.~B8! subject to the initial conditions one
has

X~t,z!5u0~12r0!cosAR̂sc~t2z!

2
1

AR̂sc

F R̂scE
01

du0

dz
GsinAR̂sc~t2z!. ~B13!
2-11
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In the remainder of the calculation we consider a unifo
input density sor051 andE050, and we get the following
expression for the Jacobian:

]z

]z
5

1

AR̂sc

du0

dz
~z!sinAR̂sc~t2z!2u0~z!. ~B14!

The analytic solvability of Eq.~B14! depends onu0(z).
For the boundary data in Eq.~4!, repeated here

u0~z!511
1

2 (
n

ensin~vnz1un!,

with the vn normalized frequencies one gets

z~t,z!5t2z1(
n

envn

2AR̂sc

3H cos@~vn2AR̂sc!z1AR̂sct1un#

2~AR̂sc2vn!

1
cos@~vn1AR̂sc!z2AR̂sct1un#

2~AR̂sc1vn!
ut

J

ci.

.

J

h,

c

01650
2
AR̂sccos~vnt1un!

R̂sc2vn
2 J

1
1

2
(

n

en

vn

@cos~vnz1un!2cos~vnt1un!#.

~B15!

Whene(z)5e1sin(v1z), Eq. ~B15! gives

z~t,z!5t2z1
e1v1

2AR̂sc

H cos@~v12AR̂sc!z1AR̂sct#

2~AR̂sc2v1!

1
cos@~v11AR̂sc!z2AR̂sct#

2~AR̂sc1v1!
2

AR̂sccos~v1t!

R̂sc2v1
2 J

1
1

2

e1

v1
@cos~v1z!2cos~v1t!#. ~B16!

Equation~B16! does not apply beyond wave breaking, sin
the absolute value was removed from the Jacobian~B3! in
the derivation.
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